5 research outputs found

    PROBING VIBRATIONAL WAVE PACKETS IN ORGANOPHOSHOROUS MOLECULES USING FEMTOSECOND TIME-RESOLVED MASS SPECTROMETRY

    Get PDF
    Organic phosphates and phosphonates share a basic structure with organophoshorous chemical warfare agents and cellular components such as DNA. To understand ultrafast nuclear dynamics in isolated organic phosphates and phosphonates, Femtosecond Time Resolved Mass Spectrometry (FTRMS) was employed. FTRMS applies the pump-probe technique with mass spectrometric detection. In our experiment an ionizing 101410^{14} W cm−2^{-2}, 1500 nm, 18 fs pump and a non-ionizing 101310^{13} W cm−2^{-2}, 800 nm, 25 fs probe pulse were used. Experiments were performed on four related compounds: dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), diisopropyl methylphosphonate (DIMP) and trimethyl phosphate (TMP). The yields of parent molecular ions generated by the pump pulse exhibited ultrafast oscillations with the period depending on the parent molecule. These oscillations indicate the presence of a vibrational wave packet that is excited upon ionization. In DMMP, a well resolved peak of 45 fs (732±28732\pm28 cm−1^{-1}) was observed with a weak feature at 610-650 cm−1^{-1}, while DIMP exhibits bimodal oscillation with frequencies of 554±28554\pm28 and 670-720 cm−1^{-1}. Oscillations for DEMP were barely visible due to rapid decay. The high- and low- frequency oscillations in DMMP and DIMP were assigned to coherent excitation of O-P-O bend and P-C stretching respectively based on DFT calculations. Bimodal oscillations at 770 and 880 cm−1^{-1} in TMP were also observed and are tentatively assigned to the symmetric and asymmetric P-O stretching modes. These results suggest that this group of compounds exhibits similar coherent vibrational excitation upon ionization. These results may have applications to development of new organophosphorous chemical warfare agent detection and destruction techniques based on the coherent control and may point to reaction pathways in organophosphorous compounds of biological relevance

    A Case of Cyperus spp. and Imperata cylindrica Occurrences on Acrisol of the Dahomey Gap in South Benin as Affected by Soil Characteristics: A Strategy for Soil and Weed Management

    Get PDF
    Because of the limiting efficacy of common weed control methods on Cyperus spp. and Imperata cylindrica their occurrences in tropical agroecologies and the effect of soil properties in suppressing these species were investigated in south Benin (Cotonou), a typical ecology of the Dahomey gap. Weeds and soil samples were collected twice early and later in the rainy season in 2009 at four topographic positions (summit, upper slope, middle slope, and foot slope). Sampling was done according to Braun-Blanquet abundance indices (3 and 5) and the absence (0) of Cyperus and Imperata in a quadrat, respectively. The relationship between their respective abundances and soil parameters (texture, C, N, P, K, Na, Ca, Mg, and Fe) was explored. Weed occurrence was less related to soil texture, and Imperata growth was more influenced by soil nutrients (K, Ca, and Fe) than Cyperus spp. Soil cation ratios of K : Mg and Ca : Mg were the main factors that could be changed by applying K and/or Mg fertilizers to reduce Cyperus and/or Imperata occurrence. Maintaining high Fe concentration in soil at hillside positions can also reduce Imperata abundance, especially in the Dahomey gap
    corecore